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ABSTRACT

Suppression produced among combatants exposed to mixed, nonuniform fires
is given an operational explication through a ‘single-round period of
suppressive effect' which is permitted to have a random duracion that
may stuchastically depend upon miss-distance. Explicit formulas are
derived for the expected duration of periods of suppression and for
expected detection times when the underlying search activity 1s suspended
during periods of suppression. Suppression thus represented as a hiatus
in combat activities, as is customary, is shown in the case of search
activities to produce such extremely long expected detection times that
even very smal] but nonzero detection rates during periods of suppression
make major reductions in those expected detection times. Fractional
suppression, a more satisfactory concept that permits nonzero activity
rates during periods of suppression, is introduced; and an explicit
formula for expected detection times in the presence of fractional

suppression is established.
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I, INTRODUCTION AND CONCLUSIONS

Suppression, as a concept, is given & simple operational explication
through a 'single-round period of suppressive effect' which is associated
with each projectile impacting in the vicinity of a combatant. During
each such single-round period of suppressive effect, which commences at
some indicator event, the affected combatant {s suppressed; at all other
@ times the combatant is unsuppressed. A period of suppression for a com-
: batant that is unsuppressed begins with an event that produces a ncnzero,
; single-rounc period of suppressive effect; and 1t ends when the affected
‘ combatant first thereafter beccmes unsuppressed. Arbitrarily long random
periods of suppression for the affected combatant m.y thus arise from
overlap between consecutive single-round periods of suppressive effect.

By proceeding from this definition, expected durations of periods of sup-
pression are deduced under very general conditions for situations in which
the impact times of the associated projectiles are adequately represerted
by independent Poisson processes with constant intensities. The resulting
model is mathematically exact, and it includes:

i, i Stk £ st

S

« Arbitrary, random durations for individual single-round
K\ periods of suppressive effect that stochastically depend
| on the miss-distance of the associated projectile

« An arbitrary number of different, nonuniform impact
distributions for each type of projectile

{
« Different distributional characteristics for the single- ‘
round period of suppressive effect associated with each !
i distinct pair of projectile-target types i

1

The formulas which result are remarkably simple; they depend only on the
average durations of the random single-round periods of suppressive effect
and the average arrival rates for the associated rounds. Expectied detection
times for search processes in which the search activity is suspended during
periods of suppression retain the same simplicity.

g e

In those situations the expected durations of a period of suppression and
of a period to a detection grow exponentially both with the rates at which
projectiles impact and with the average durations of the probabilistically
different, single-round periods of suppressive effect. When the detection !
rate during suppression is small but not identically zero, the corresponding i
expected detection times can be much smaller than they are when that rate f
L is identically zero. Indeed, they can become small enough to make the usual !
! all-or-nothing representations of suppressive effect unsatisfactory for many i

typical applications. Fractional suppression, a more satisfactory concept,
is introduced to accomaodate nonzero activity rates during suppression.

Exhibit I, following this page, summarizes well our theoretical findings.
The expected times needed by a suppressed combatant to make a detection

4 i are plotted as a function of the impact rate in its vicinity for a selection
of 'suppression fractions', fractional rates at which activities can proceed

HORMRIOAN ANALYTICS
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during periods of suppressive effect. The combat situation 1s such that
the expected detection time in the abzence of supgrcs:ivc fire is twenty
seconds, a situaticn which, in terms of fractional suppression, provides
the same expected detection time as one with fire that has no suppressive
effect whatsoever. Such ineffectual fire is characterized by a unit
suppression fraction (n = 1); and the associated expected detection time
is constant with respect to the impact rate, as the dashed 1ine in the
exnibit indicates. More effectual fire of course forces the combatant
into concealment or into cover and tends to degrade progressively the
rate, scope, and quality of its activity.

Suppression models typically assume that the resulting degradation is
total: suppression introduces & hiatus in whatever activity the combatant
was pursuing., In the case of a search activity the search rate becomes
zero, and therefore the detection rate bacomes zero as well. Because the
analytical formulas devised in the course of the subject investigation
permit thc direct computation of expected detection times in the presence
of periods of total and fractional suppression, the consequences &f that
assumption can be examined in relation to what happens when the detection
rate, although diminished by suppression, remains greater than zero.

When a single-round period of sup?ressive effect produces a hiatus with
a five.second duration, for example, expected detection times increase
substantially even for very low impact rates. They increase from the
dashed line {n = 1) at the bottom of the vertical stripes in the exhibit,
where the effect of the suppressive fire on detection is nil, to the curve
(n = 0) at the top of the stripes, where the detection rate is forced to
zero during periods o/ suppression. The divergence between the dashed line
and thrt curve, marked by the vertical stripes, smphatically illustrates
the suppression-induced extremes in expected detection times for rates of
impact up to one round per second. A rite of impact producing only one
impact every ten seconds doubles the expected detaction time. Suppressive
fires with single-round periods of suppressive effect that force activity
rates to zero are thus overwhelming. For that reason whether the rate is
forced exaotly to zero becomes a crucial question: if not, then repre-
senting suppression as a hiatus leads to a major misrepresentation of an
important combat factor and, in the case of search activities, to a major
overestimation of expected detection times.

Suppressive effect resulting in search rates that are one-half (n = 0.5)

to one-tenth (n = 0.1) of what they would be in the absence of suppressive
fires is prima facie much more plausible than that producing only an exactly
zero suppression fraction. The shaded region in Exhibit I shows the corre-
sponding range of expected detection times. Although it is less extensive
than the maximuin range, the extremes it covers are indeed great, )

Small misestimates in the suppression rraction or i1ts equivalent tend to
produce large errors in the resulting expected detection times. Small
variations in the impact rate can similarly produce large changes in the
resulting expected detection times, once a moderate or better rate has
been achieved. For all these situations the respective coefficients of
variation (ratios of the standard deviations to the corresponding expected

MORRIOAN ANALYTICS
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detection times) are approximately unity; hence, when the expected detection

times are moderate or larger, the random fluctuations about them will be
great. Both the expected detection times and the random fluctuations are
strongly amplified by even slight additional increases in the expected
detection time in the absence of suppressiun. Additional {increases in the
duration of a single-round period of suppressive effect, however, have
Tittle additional effect, except for very low rates of fire.

Fractional suppression thus shows that tha overall suppressive effect of
increased rates of fire reaches a point of diminishing return, after which
additional increase in the rate of fire produce no appreciable increases
in expected detection times. Casualty gvoduction further 1imits such
increases in expected detection times, because a combutant must survive

in order to detect. The greatest changes in predicted expected detection
times are introduced by departures from zero-rate, all-or-nothing sup-
pression; hence, for all but the lowest impact rates, the typical ideal-
1zation of suppression as a hiatus is {11-advised.

Beyond that noteworthy, cautionary fact the understandin? and quanti ‘i
cation of suppression achieved during the subject invastigation fucus
attention on suppression's inherently voluntary nature, the singular
importance of which is emphatically {llustrated by the major changes made
in the expected detection times by variastions in the suppression fraction,

not to mention additional, large changes made in response to variatiuns in -

the duration of a single-round period of suppressive effect. As suppres-
sion 1s voluntary, a coumbatant need never be suppressed, provided survival
is of no importance. Somewhere, however, between everyone's charging into
the sustained fire of machine guns -- a discipline entailing essentialiy
zero survival prospects -- and hiding permanently, head first in a foxhole
with similar survival prospects, there exists a degree and a dur~cion for
a single-round period of suppressive effect, which may vary from combatant
to combatant in accordance with their tactical roles, that optimizes sur-
vival prospects.

Suppression, in summary, cannet be auantifiad in the sense that weight,
distance, or even Palllstil -urrors caii be. 10 iy uiflferent from them
because 1t i35 nainly voluntary and theiretcie admits degrees as well as
cysiematic and unsystematic variations. Examination of analytical results,
of which Exhibit I is representative, and reflection thereon suggest two

major conclusions: i

—

- suppression tdealized as a hiatus in combat activities
is analytically unsatisfactorv and counterzroductive

« the degree and duration of s1agie-round periods of suppres-
sive effect can be chosen to maximize tactiral advantage.

Juintly these conclusions provide a much improved vantage for considering
suppression: they suggest that the more important qucsiion about suppres-
sive effect is not what it was in past situations, but rather whai it
should be in a given combat situation to provide that balance between
immediate survival and ability to return fire which yields the maximum
tactical advantage.

‘.
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I1. A SIMPLE MODEL FOR SUPPRESSION AND DETECTION

Suppression is initially 1deslized herein as a hiatus introduced into a
comhatant's activity by the nearby impact of a round. Such a hfatus, when
assoctated with 2 single round, is defined to s*'rt at the time of the
impact or other indicator and to continue for a ,usitive duration there-
after. It is termed a single-round period of suppressive effsot; 'volley'
or 'burst' may, of course, be substituted for 'round' when appropriate.

The duration of a single-round period of suppressive eff.ct is inherently
voluntary and accordingly may vary widely from combatant to combatant and
even from one combatant at a given time to that same combatant at another
time. Miss-distance, environment, and round type arc additional, important
sources of variations, However, because the duraticn is voluntary, speaking
of a constant duration 1s meaningful notwithstanding what may be its actual,
probably great variation from instance to instance.

So long as all inter-round impact times exceed the duration of a single-
round period of suppressive effect, the total time during which a combatant
is suppressed {s defined to be the sum of the individual durations. When
additicnal rounds impact during an existing period of suppressive effect,
that period will be prolonged, at least until ~assation of the single-round
period of suppressive effect associated with the last of the additional
rounds. A period of suppression for a combatant {s consaquently defined

to terminate when an inter-impact tine first excoeds the duration of a
single-round period of suppressive effect. The discipline thus prescribed
for the idealized combatant is that its combat activities are to be resumed
at the exgiration of th2 single-round period of suppressive effect associated
with the last impact in its proximity.

(1) Suppression at Its Simplest

Together these concepts determine a nearly irreducibly simple mathematical
model of suppression. It renuires oniy

« & ragion of suppressive affect associated with
each combatant

+ a constant duration r for the single-round
period of suppressive effzct caused by an
impact in the affect region

+ a Poisson process N*(t) with constant intensity
A for the impact stream within the affect region

*
so that A and t, two parameters, alone need quantification. N (t) is of
course the impact point process, the number of impacts in the affert region
in a duration t. Define S" to be the randem duration of a resulting period
of suppression.

Without Toss of generality the combatant may be assumed to be suppressed
initially by an impact in its region of suppressive affect at time zero.
It will thus remain suppressed at least until v ; whether it continues to

4 HORRIOAN ANALYTICS
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be suppressed at some time t depends on whether an appropriate number of

" timely additional impacts occur. On the hypothesis that N (t) = n , the

impact times of the n rounds in the affect region are un1form1y and inde-
penoent1y distributed on the interval [0,t] because N (t) is Poisson. If
T1 fori=1,2, .c.o N respectixely designate the random inter-impact
times for those rounds, and if Tn+1 is the duration between the last impact

and t , it follows from a theorem! of De Finetti (with A designating the
extended ‘and' operation) that

n+l 1 n+l n
ity Tt = (-1 ¢}
1]

when (x)+ designates the positive part of x : (x)+ = 0 for x<0, and (x)+ = X
otherwise. By virtue of an identity2 for the realization of none out of m

events (with m = n+1) , the probability that all the T: are equal to or less
than T is:

n+1 n+] # K
Pr{ A, T gt} = _5_ <“ )(-1) (1-kz/t)" .
1 =k k *

Since the duration S of the period of suppression exceeds t if and only if
all the T are equal to or less than t , 1t follows that the right member
of the preceding equation is in fact Pr{s >t|N (t) = Therefore, the
unconditionai proubability that S >t is

* = ISR N
Pr{S >t} = :E;:k (-1)k[A(t-kr)+]k 1[____1271__}9 A[t-(t-kr),]

after the resultant order of summations is exchanged and the inner extended
summation is put into closed form.

The right member of this eguation is not convenient for the determination

of the expected value of S or its variance. Its Laplace transform, however,
is both convenient and intrinsically useful, as later considerations will
illustrate. Let £ be the Laplace transformation operator, and let s be the
transform variable. Termwise application of the fundamental transformation

HORRIOAN ANALYTICS
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for powers of t , which may be written

| £(t™/|m=1) = 57"

for positive, integral m , together with the shift theorem yields

£ [Pris™>t}] = [1-e~ ()T rsmre(Ats)Ty |

R s o o

Since the moments of S* can be obtained from Pr{S*>t} in the following
manner '

o0
: E(S™) = n / t"lor(s s thdt
; 0

T i ST WS e ST

it follows directly that E(S*) is merely the value of £[Pr{s*>t}] at
$ = 0 ; therefore,

L

.~ E(ST) = (1) }

The second moment similarly follows from the derivative of £:[Pk{s*>t}]

with respect to s as evaluated at s = 0 ; and the variance clearly follows |
therefrom as §

Var(s™) = (e®AT-2xce?T-1)/a2

T S e e

after the appropriate algebra is performed.

*
The exponential dependency of E(S ) on A and v impiies that small increases
in the impact rate in the course of an engagement can induce large, sudden
increases in the average duration of suppression periods, once a moderate
impact rate has been achieved. The similar growth in the variance suggests
! very substantial fluctuations in those durations. In fact the coefficient
5 of variation for S* is asymptotically one.

7or e 1 e T e s

*

Just how rapidly E(S ) can change is shown by Exhibit II, following this
page. For selected durations t of the single-round period of suppressive
b effect, E(S*) is graphed as a function of the impact rate A in the region
: of suppressive affect. When t is as small as two ssconds, slight changes 5
in the impact rate can produce great changes in E(S™), the average duration L
of a period of suppression. As Exhibit III shows, those great changes in |
the average duration of suppression in response to slight variations in ;
the impact rate are matched by the correspondingly great changes caused by B
slight variations in the duration of a single-round period of suppressive ;
3 effect. Consequently small discrepancies between assumed durations of §

. suppressive effect and actual durations can introduce great variations in i
any durations of suppression periods extrapolated therefrom. !
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Although these formulas appear new in the context of suppression, they are
well-known in other applications®. They may also be derived by more general
means than those herein employed, notably by the methods of renewal theory.
The derivation just outlined is, however, direct and is the one that led to
the formulas in the context of suppression.

(2) The Simplest Suppression and Detection Interaction

Many search activities in the combat environment are characterized by an
exponentially distributed detection tine. Any such activity consequently
possesses the Markov property for the exponential distribution* and is
therefore easily adjusted to account for being suspended during periods of
suppression. Indeed, a detection may occur only between periods of suppres-
sion because the hiatuses they create block all such events while they last;
in other respects the search and bombardment activities are presumed inde-
pendent. The Markov property then insures that the random detection time
retains the same exponential distribution regardless of the number and
dgration of preceding periods of suppression and fruitless search. Since
N*(t) 1s Poisson, it similarly insures that the duration between the end

of one period of suppression and the start of the next defines a family of
independent, identically distributed random variables.

Accordingly a basic suppression-search cycle exists. It begins with the
onset of a period of suppression and ends either with the onset of another
period of suppression or a detection, whichever first follows the initial
period of suppression. All cycles are identically and independently dis-
tributed in duration. The first part of a cycle of course has the duration
S* , that of a simple period of suppression. The last part is the period
between the cessation of suppression and either a detection or an impact,
whichever occurs first. Since the search activity and the bombardment
activity are independent aside from periuds of suppression, the probzbility
distribution for the duration from the end of the period of suppression to
the end of the cycle follows directly.

Designate the duration by T* . Since T* is the minimum of the time to
the first detection and the time to the next impact, which are independent,
exponentially distributed random variables, it follows that

Pr(T™>t} = (M)t

when y is the detection rate in the absence of suppression. A cycle thus
has the duration S* + T* ; and the probabilitx that it ends with a detec-
tion, an event which is independent of both S* and T* , is easily shown
to be y/(y+) .

A combatant that is initially suppressed at the time zero may or may not

end its first cycle with a detection. The random number of cycles up to
and including that on which its first detection occurs has a geometric

HORRICAN ANALYTICS
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distribution. Designate that random number by N* ; 1t then has the
geometric probability density

‘ *I = A n-]
| PrN" = n} ?}T[Fi] .

Further, designate the random duration of the i-th cycle by c* . Then
the time D* to the first detection is simply

Pt & iaiaun Al

a sum of independent, identically distributed random variables. The
average time E(D*) to the first detection following the onset of a
period of suppression is

E(D") = (1/a+i/v)eM = I,

e e T T S T = T

*
which is an immediate consequence of the preceding expression for D .

Suppression, when taken as a hiatus, is thus seen to have a great effect
on detection times. They grow at a rate even greater than the simple
suppression periods previously examined. Exhibit IV, following this
page, fllustrates that rapid growth when the average detection time in
the absence of suppression is 20 seconds. The average detection time

in the presence of suppression is displayed as a function of the impact H
rate for a single-round period of suppressive effect of unit duration in |
comparison with the average duration of a single period of suppression
under the same circumstances. The strong effect that all-or-nothing
periods of suppressive effect have on detection times is manifest.

i e G g Ty "

; Because the random duration of a suppression-search cycle is S* + T* ,
; a sum of two independent random variables, the Laplace transformation
: C(+) of its frequency function is the product of those for S* and T* .
Since that for S* follows directly from that of its tail, which is

already established, and that for T* is immediate, their respective
product

| Atse(A¥s)T Atyts

e e ams et mmataD

with s as the transform variable, gives the Laplace transform of the
frequency function for the duration of a suppression-search cycle. As
1 D* is the sum of N* such variables, which are identically distributed
f and are independent both of each other and of N* , a simple calculation
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shows that the Laplace transformation of the tail of D* mey be written

2[Pr0">t}] = BX[10(s) ) [rty-rc(s)]

L
in which s remains the transform variable. The expected value of D ,
already derived, as well as the higher moments can of course be easily
and directly obtained from this equation. Later a more significant use
will emerge in the context of fractional suppression.
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11, MISS-DISTANC MIXES, AND SUPPRESS!

No doubt the most ap?nrcnt unsatisfactory assumption undorlying these
formulas is the idealized constant duration of the single-round period
of suppressive effect. Further, that duration is required to be inde-
pendent of miss-distance, and 1t must be the same for mach type of
round. Ignoring casualties is of Zourse a shortcoming, but the suppres-
sion process {tself is not theraby grossly restricted, as it is by the
aforementioned assumptions.

Several avenues of generalization for the simple model are thus suggested;
and they lead to broadly applicable formulas of remarkable simplicity.
The generalized suppression model established therefroin permits:

+ Random durations for single-round periods of
suppressive effect

+ Durations for single-round periods of suppres-
sive effect that depend on miss-distance

« Distinct characteristics for the periods of
suppressive effect associated with each ard-
nance or projectile type

« Segregated, nonuniform delivery of any mixture
of projectile types

The general model thus encompasses a substantial number of factors that
affect suppression. Durations of su?pression for each round type are not
only permitted to be distinct, but also they may be random variables with

different probability distributions, which may be functions of miss-distance.

Random durations for single-round periods of suppressive effect allow
differences in judgment of an individual combatant to be reflected as
variations in the single-round suppressive effect of even identical

rounds impacting at the same distance. Durations of single-round periods
of suppressive effect that deterministicaliy depend on miss-distance are
thereby randomized regardless and thus illustrate another variation in
the suppressive effect of identical rounds. Permitting single-round
geriods of suppressive effect to depend on miss-distance also allows

ocal nonuniformities in projectile delivery to be faithfully represeated.

(1) Random Single-Round Periods of Suppressive Effect

In the s!mple model all impacts in the region of suppressive affect produce
2 single-round period of suppressive effect of fixed duration t ; in the
general model a projectile of the i-th type fired from the j-th source
produces a,single-round period of suppressive effect with the random
duration Tij » a1l of which are independently distributed. In the simple

]O HORRIOAN ANALYYTICS
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model there is :nly ore impact rate fn the region of supprassive affect;
in the general model there 1s o:2 such rate A for each projectile type
from each sourca. The respective impace times of projectiles of each
type from each source are assumed to follow independent Poisscr processes
with the respective intensities kiJ‘

Presumably the duration of a single-round period of suppressive effect
depends on miss-distance. Given a particular combatant and situation,
a particular projsctilo type, and a fixad mise-distance x , there 13 a
random variable T () which 1s the duration of the single-round period
of suppressive effect that results from an impact & distance x from the
combatant. Of course, the duration of such a suppression period may be
taken as a function of the miss-distance. In either avent, because the
miss-distance itself i3 a random variable, the resulting single-round
period of suppressive effect has a random duration.

As indicated above the random duration of this suppreision period for a
projectile of the i-th type from the j-th source is Tij in which depen-
dency on miss-distance is implicit. If the function si(t.x) is the
probability density for a single-round period of duration t arising from
the impact of the i-th projectile type a distance x from the combatant,
and if f1J(x) is the probability density governing impacts at x by a
projectile of the i-th type from the j-th source, then the expected
(average) duration of a single-round period of suppressive effect is

E(Tyy) = £Ltsi(t.x)fid(x)dxdt.

The remarkable aspect of the generalized model is that these expected
values together with the average impact rates 11 determine the expected
durations of suppression periods as well as expected detection times.

As in the simple model, for ar. entity to be suppressed for a duration t ,
there must be an unbroken chain of overlapped, single-round suppression
periods which together, from the beginning of the first to begin, to the
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end of the last to cease, constitute a duration t . Unlike the simple
model, the durations of the cingle-round periods of suppressive effect
are no longer the same in duration; short ones and long ones are haphaz-
arcly mixed, and many gaps between short ones may be filled by a single
long one. Despite this groat increase in physical complexity and a
comparable increase in mathematical difficulty, there is 1ittle change
in the formula for the expected duration of a suppression period. The
cumbersome but necessary mathematical details are treated in Appendix A;
in the following only the major results are deszribed.

For R round types and N fire sources define A , the combined impact rate
of projectiles in the region of suppressive affect, as follows:

R N
A A
2y 2
As in the simple model, designate the random duration of an overall

suppression period by S* . Then the expected duration of an overall
suppression period in the generalized model i¢

E(s") = ]T;exp [if iJA‘JE(T:J)] -ls

a remarkably simple formula, which involves only th.. expected durations
of single-round periods of suppressive effect.

When each round type is represented by a distinct singie-round period of
suppressive effect which is a constant independent of miss-distance, the
formula simplifies further. In that case there are no random variations
in the duration of a single-round period of suppressive effect. For a
fixed round type all such periods are of identical duration. For the
i-th round type designate the duration of a single-round period of sup-
pressive effect by LR Because the Ty are functionally independent of
miss-distance, they are consequently independent of the source of fire.
Hence, the segregation of rates of impact by the source of fire is not
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‘necessary in this case. Accordingly, if A is defined by

N
a-z:a
i M

then it designates the impact rate of the {-th type of projectile in the
region of suppressive affect. The expected duration of an overall period
of suppression 1s accordingly given by

ol

in which S* again designates the random duration of an overall suppression
period and A the combined impact rate.

(2) Expected Detection Times in the Generalized Model

Detection in the generalized model is conceptualized just as it is in the
simple model. A combatant cycles between suppression and search until

it first makes a detection before the onset of the next suppression period.
Despite the greatly increased physicai complexity encompassed by the general
model there is no proportionate increase in the complexity of the formula
for expected detection times. With D* again designating the random time

to a detection by an initially suppressed combatant, 1t can be shown, using

the argument advanced for treating detection in the presence of simple sup-
pression, that

R N
E(D") = (V/y + l/J\)exp[E1 ZJAUE(T:J)] 1/

when y remains the parameter in the exponential distribution of detection
time in the absence of suppressive fires. Thus a simdie, general, and
convenient formula is available for connecting the effect of suppressive
fires with the ability to return fires.

When the durations of single-round periods of suppressive effect are

assumed constant for a given projectile type a somewhat simpler formula
governs:

R
E(D*) = (1/y + 1/2)exp [Zixiri]-l/x

in which the vy again represents the single-round suppression duration

assigned to the i-th projectile type, and A designates the corresponding
impact rate.

HORRIOAN ANALYTICS
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1V. DURATIONS OF SUPPRESSION FOP UNDAMAGEU COMBATANTS

These formulas neglect casualties. While that it 2 minor omission
relative to the simple model, it is still a flaw. It tends to lengthen
erroneously the expected detection timas, because it implicitly ignoras
the fact that an entity must survive in order to detect. When a com-
batant survives the rounds impacting in its region of suppressive affect
during the suppression periods preceding a detection, the expected number
of such impacts is consequently reduced; hence, the expected time it is
suppressed is reduced and therewith its expected detection time.

How the duration of a period of suppression 1s affected is easily seen
in terins of the simple model. With & designating the single-round
damage probability and ii{t) designating the event that the combatant is
undamaged during the time t , it is shown in Appendix B that the formula

ECSju(s™)] = [(1+8a1)/ (s +T5eT)a19/2

gives the expected duration of those periods of suppression during which
the combatant 1s undamased. In situations in which no damage is possible
& 1s zero, and E[S*|u(S*)] then equals E(S*) . For positive & it is always
less than E(S*) ; and it strictly decreases with 1ncreas1n? é until
finally, when § is one, it becomes t , the smallest possible period of
suppression in the simple model,

Survival prospects during a period of suppressic: are best given by
the probability Pr{U(S*?} that the combatant is undamaged during a
period of suppression. It is related to the expected duration E(S*)
of a period of suppression by the illuminating formula

Preu(s™)) = (1-8)/[1+A8E(ST)T

which makes very clear how the probability of surviving a period of
suppression depends on the expected duration of those periods. As that
duration increases, Pr{U(S*)} decreases. Consequently periods during
which the combatant is undamaged should have shorter durations.

Whether the quantitative consequences of using E(S*) vice E[S*|u(s*)]

are major or minor obviously depends strongly on the single-round casualty
probability 6 . When it is small and the impact rate is small to moderate,
the consequences appear to be negligible. However, whenever it is not
small or the impact rate is high, the consequences are major. In such
cases the consequences are greater for damaged combatants; for instance,

if & is small and A moderate, then E[S*|U(S*)] can be about ten percent
less than E(S*), while E[S*[G(S*)] can be twice E(S*). On the other hand,
when & is moderate and A high, the reverse can easily obtain; E(S*|u(s*™)]
can be about half E(S™), while E[S*]0(S*)] exceeds it by no more than ten
percent or so. In either case, those periods of supﬁression during which
casualties occur are much longer than those during which there are none.
Combatants, in effect, are pinned down by suppressive fires for much

longer times when damage occurs -- a possibly surprising fact considering
the assumed total randomness of the fires.
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V. FRACTIONAL SUPPRESSION AND EXPECTED DETECTION TIMES

Neglect of casualties is not the only flaw in the generalized suppression
el. A more fundamental one is ihe tdealization of sugprnssion as 2
hiatus in the activity of the suppressed combatant. Although that handy
idealization is commonly used in modoling suppreassion, it is nonetheless
counterfactual. Suppressive fires slow down activities, but they do not
necessarily stop them. Idealizing suppression as a hiatus is adequate
only insofar as periods of suppression are considered in abstraction --

without any interaction with combat sctivities.

Search activities are a case in puint. Expected detection times in the
resence of suppressive fires can very easily become very long, as Exhibit
V illustrates. Simply because those times can be so long, the difference

between suppression as a stopping of all activity and suppression as a

slowing of 1t is important. If suppression is truly a hiatus in combat

activities, then detection cannot be made durin? periods of suppression,
regardless of their durations. If suppression is anything less total,
however, detections will then frequently be made during periods of sup-
pression, particularly when their expected durations are long.

Suppression that {s less than total is herein termed fraotional suppression;
durin? periods of fractional suppression combat activities proceed at a
fraction of their unsuppressed rates. Search activities of the type pre-
viously defined, that develop a detection rate y in the absence of suppres-
sion, proceed with the reduced, fractional rate ny (for an appropriate n in
the unit interval) during periods of suppression. Expected detection times
therefore can never exceed 1/(ny) regardiess of the duration of periods

of suppression. Fractional suppression and casualty production thus both
operate to decrease the duration of detection timas.

Idealizing a single-round period of suppressive effect not as a hiatus

in a search activity but as reduction in some major factor, for example,
the solid ang1e available to the combatant for search, captures a vital
characteristic of the interuction of search and suppression. A limit on
the efficacy of suppressive fires to inhibit detection is imposed; a point
of diminishing return is established. Increasing rates of fire no longer
produces progressively greater increases in expected detection times.
Instead, the increases in those times reach a maximum and then become
progressively smaller. Never can the expected detection time be forced
beyond 1/(ny) . A necessary logical boundary is thus incorporated without
which the suppression process itself is compromised.

What fractional suppression means is easily visualized in terms of the
example, An upright combatant, for example, typically has a field of
view that is much greate: than that available from a crouciiing or a prone
position. In keeping with maximum simplicity no new region of intervisi-
bility is permitted to be introduced in shifting from upright to prone,
Nearby impacts which result in that combatant's taking temporarily a
position other than erect thereby introduce fractional suppression by
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: reducing the solid angle available for search activity from that available
P in an upright position to some smaller portion. As a result the detection
P, rate is decreased, and the expected detection time is increased. Impacts

= in the vicinity of a crouching combatant similarly can cause the solid
angle available for search activities to be reduced to that portion avail-
able from a prone position. Thus conceived, fractional suppression makes
the counterfactuality of suppression as ¢ ' *atus obvious.

j Y T S T T e

Quantifying fractional suppression is straightforward in concept. The
fraction n itself, in terms of the example, is merely the ratio of the -
steradian of the solid angle available to the search activity in the
presence of suppression to that available in the absence of suppression.
The search activity can accordingly be represented by two independent
processes, one characterized by the detection rate (1-n)y and the other
by the detection rate ny . The first process arises from search in the
solid angle that is unavailable during periods of suppression; the second
process arises from search ir the solid angle that is always available.

] Suppression always suspends the first process, but it never affects the
1 second.
E

T ————
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@ Such straightforward quantification notwithstanding, an interesting
&uw question develops when commonplace approximations in search modeling are
i introduced., If targets are uniformly distributed over the solid angle

and a glimpse model or a constant search rate model is employed, for
; example, then the expected time to a (first) detection has the same value
! for all solid angles within the initial one. Consequentlv, for such
: representations, search through an arbitrarily small, il11-situated knothole
. is as effective as search with an unrestricted field of view. However,
F when intermittent intervisibility is the dominant factor and the model
g reflects that dominance, then the fraction by which the solid angle is
; reduced indeed directly and similarly modifies the corresponding detection
' rate. The suppression-detection model herein explored is of course
directed to the latter situation.

- :
Consequently, the random detection time D, associated with the first process
behaves exactly the same as the random detection time in the presence of
simple suppression previously examined after the associated detection rate vy
is replaced by (l—ngv . That random detection time D} associated with the
second process of course follows an exponential distribution in which the
parameter is the appropriately diminished detection rate ny . The random
time D*(n) at which the combatant, cycling between fractional suppression
and search, makes its next detection is clearly just the minimum of those
two random times. The tail of the distribution of D (n) is thus

— T

Pr{D"(n)>t} = Pr{D1>t , Dy>t} = Pr(Dp>t}e Mt ,

{ in which the rightmost member follows from the assumed independence of the
' underlying processes. That form of the tail Pr{D*(n)>t} 1is handy for
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establishing the moments of D*(n) as those oI D* were established initially.

Indeed, using that form the n-th moment of D" (n) 1s given by
o0
E[D*(n)]n = njf;""Pk{D:>t}e'“7tdt ’
0

which 1s essentially nothing sther than the (n-1)-th derivative of the .
previously established Laplace transform g£[Pr{D*>t}] of the tail of D",
after ny is substituted for the transform variable and {1-n)y is substi-

tuted for the original search rate. Consequently, if the variable z is
defined by

. (A+ny)[a +(1-n)v]
(k) [ +nye AtnY)Ty

then the expected detection time E[D*(n)] in the presence of fractional
suppression is

* - -

Regrettably, the algebraic simplicity of the expected detection time E(D*)
in simple suppression is lost, but a vital recognition of diminishing
returns, which is much more than compensatory, is acquired.

Although the variance is slightly more cumbersome, it toco follows easily
from the Laplace transform of the tail of D*, after the second moment is
obtained by differentiation. Define the intermediate variable z' by

Z' =r 1 _‘ ] - ]+DIT z
Lk +ny  Ady nyﬂe-(?ﬁnﬂr

and the variénce can then be written

Var[D"(n)] = 2 [m'awgﬁ’fmm + ,—}Y-] ELD" (n)1-E2[D" (n)]

Despite its more cumbersoine form, the variance is closely related to the
expected value, because the coefficient of variation is very nearly unity
for a wide range of situations, including all those herein considered.

How fractional suppression affects expected detection times is shown in
Exhibits V and VI, which follow.this page. In both those exhibits the
suppression fraction n takes the values: 0.0, 0.05, 0.1, 0.25, and 0.5 .
The first value, of course, corresponds to the usual idealization of
suppression as a hiatus; the values from 0.1 to 0.5 are perhaps more
representative. In each exhibit the expected detection time in the
absence of suppression is 20 seconds.
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In Exhibit V the single-round period of suppressive effect is 5 seconds,
and the rates of impact A are small to moderate, yet variations in the
expected detection times are great. ‘When A is about 0.1 the range 1is
already significant, and it increases substantially with increases in i .
When A equals 0.5 the s1ight difference in the suppression fraction n
between total suppression (n = 0) and nearly total suppression (n = 0.05)
results in an almost 40 percent reduction in the expected detection time.
The difference in detection times arising from total suppression and the

; next level of reduced activity (n = 0.1) exceeds 50 percent. Thus, 1f n is
L ! about 0.1 instead of 0, then the expected detection time is ov~-2stimated
{ i by 120 percent. The percentage differences increase slightly v:ith smaller
f ; expected detection times for detection in the absence of suppression and
decrease slightly with larger ones.

i g g r st

detection times for the selected suppression fractions are graphed as
functions of the single-round period of suppressive effect t . The effect
of the high impact rate is plain. When t is about 2.5 seconds, the range
of detection time variations matches the maximum encountered in Exhibit V.
For values of v larger than 2.5 seconds, that range, which is already more
than substantial, becomes gross. When tr is about 5 seconds, the expected
detection time for all-or-nothing suppression (n = 0) is nearly ten times
greater than that with a suppression fraction n of only 0.05.

!
E 3 A single, high impact rate (A = 1) is used in Exhibit VI, and the expected
b

For moderate and higher impact rates and moderate single-round periods

of suppressive effect, small variations in the suppression fraction thus
produce large to gross changes in the expected detection times. As the
exhibits show, particularly Exhibit VI, fractional suppression strongly
Timits the increases in expected detection times that can be obtained by
increases in the single-round period of suppressive effect; diminishing
returns from the longer periods are most apparent. Fractional suppression
similarly limits the increases in detection times that can be obtained from
increases in the rate of impact, and the diminishing returns it imposes are
equally impressive, as Exhibit I indicates. Casualty production further
limits such increases in expected detection times. The greatest changes

in expected detection times occur relative to departures from all-or-nothing

: suppression; hence, for all but the lowest impact rates, idealizing sup-
; pression as a hiatus is i1l-advised.

e = o T Tt TR

B

; Obviously fractional suppression can be extended to allow retuiw of fire
g following a detection. Thus suppression can be more closely related to

: combat activities, and its role in optimizing tictical response can be
! better identified and understoud.
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APPENDIX A

EXPECTED SUPPRESSION DURATIONS ARISING FROM
RANDOM SINGLE-ROUND PERIODS OF SUPPRESSIVE EFFECT

Various formulas have been given in the preceding pages for the relation-
ship between the expected duration of an overall period of suppression
and the expected durations of the individual single-round periods of
suppressive effect that together make up the overall period. The objec-
tive of this appendix is to establish a simple, general formula of which
the ones previously employed are immediate consequences. In the general
situation the rounds impacting in the region of suppressive affect have
impact times that are governed by a Poisson process of intensity A ; and
the associated individual single-round periods of suppressive effect are
independently and identically distributed random variables, a particular
but unspecified one of which is designated T*. Specifica]]y, for an
overall random duration S* of a period of suppression arising from single-
round periods of suppressive effect that have random durations distributed
as T* this appendix demonstrates that the remarkably simple formula

E(S ) = [eprE(T ) =11/

expresses the expected duration of an overall period of suppression in
terms of the expected duration of a representative constituent single-
round period of suppressive effect and A , the rate of impact in the region
of suppressive affect. In accordance with the previous considerations T*,
which must be positive with probability one, is independent of the impact
time or indicator event associated with the arrival of the corresponding
projectile, although it can stochastically depend on the associated miss-
distance. The details of that dependency, however, do not enter into the
necessary derivations and are therefore not further explicitly considered.

%*

ansider first the case in which T takes discrete values. Designate by

the random duration of a suppression period produced by any mixture of
all the different-valued, individual s1ngle-round periods of suppressive
effect except the smallest. Designate by B* the duration of a period of
suppression created by the smallest single-round period of suppressive
effect only. An overall period of suppressive effect thus consists of a
sequence of such a-periods and b-periods. As the impacts in the region
of suppressive affect are governed by a Poissor process with intensity A ,
impacts entailing single-round periods of suppressive effect in excess of
the minimum -- those periods the mixture of which create A* -- are also
governed by a Poisson process; similarly, those rounds giving rise to
the minimum sing1e-round period of suppressive effect also constitute a
Poisson process, which {5 independent of the previous one. Designate
the intensity of the process giv1ng rise to A* by a and the intensity of
the one giving rise to B* by 8 ; of course, A = a8 .

A-1
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In the following paragraph a formula expressing E(S") in terms of E(A"),
the indicated rates of impact, and the duration B of the shortest single-
round period of suppressive effect is established. As will be ghown.

that formula inductively generates the explicit formula for E(S*) in all
cases in which the random single-round period of suppressive effect is a
mixture of a finite number of different nonrandom durations. The situation
in which the individual single-round periods of suppressive effect give
rise to random varfables with continuous distributions follows therefrom

by a 1imit argument.

*
An overall period of suppression S must naturally begin with an a-period
or a b-period. Since all the durations of single-round periods of sup-
pressive effect which constitute a-periods exceed the duration B of that
single smallest period which constitutes the b-periods, the end of any
a-period can be considered to be the beginning of a b-period because A* is
greater than B with probability one. An overall period of suppression that
begins with an a-period consists of one or more independently distributed
a-periods that are joined together by b-pei-iods. So long as the gaps between
a-periods are covered by b-periods the overall period of suppression con-
tinues. When, for the first time, a gap between a-periods is not filled Qy
a b-period, the overall period of suppression terminates, Designate by F
that portion of a gap between a-periods which is filled by a b-period. As
the last B units portion of an a;period can be taken as the beginning of a
b-period, F* is the smaller of B* -B and Hy , the time of the next impact
of a round with a single-round period of suppressive effect of the type
appropriate to an a-period; thus F* is defined by

F* = min(8"- B, H}) .
With F designating the event that a gap is filled, that is,
F = (8"-B2H)

it follows that the gaps between a-periods that are indeed filled by
b-periods have a random duration the distribution of which is the conditional
distribution of F* given F . When an overall period of suppression that
began with an a-period is terminated by an unfilled gap between a-periods,
the portion that may be filled has a duration the distribution of which is
that of F* given that ¥ . An overall period of suppression that begins
with an a-period thus consists of that a-period, zero or more filled gaps
followed by a-periods, and one unfilled gap. Obviously the number of
filled gaps has a geometric distribution with parameter f = Pr{F} so that
the expected number E(N*) of filled gaps followed by a-periods is f/(1-f) .
Therefore the expected duration of an overall period of suppression E(S*|A)
that begins with an a-period is given by

E(s|A) = E(A") + E(N)LEA") +E(FT|F)T + E(FY|R)

which may be simplified by replacing E(N*) by f/(1-f) and then replacing
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the sum of the two suitably weighted conditional expectations of F* by
its unconditional expectation, which is equal thereto. Thus, it follows

that
»* *
*
E(S"|A) = E(A tE F

after the simplifying operations are performed.

When an overall period of suepression begins with a b-period, there is
again a gap that must be filled for the overall period to continue. In
this case it extends from the beginning of the initiating period to the
onset of the first a-period. If the b-period is sufficiently persistent
to meet the first a-period, then the additional duration of the overall
period is E(S*|A) , for which a formula is already established; otherwise
tge end of the a-period s the end of the overall period. Represent by
R* the portion of the gap that is filled by the b-period. R* is thus either
the end of the b-period or the first impact of a round with a single-round
$$r12d 2: sugpressive effect that belongs to an a-period, whichever occurs
rst, that is

R* = min(B*. H:) .

Because the connection with an a-period that is necessary to sustain the

overall period occurs if and only if the event R that B 2H3 occurs, the

expected duration of the overall period given R occurs is clearly
E(R'|R) + E(S"|4) .

On the other hand, when R does not occur the overall procz2ss is terminated;
hence, its expected duration is only

E(R"|R)

in that case. With r equal to the probability Pr{R} that the initiating
b-period persists sufficiently long to meet the first a-period, the
expected duraticn E(S*|B) of an overall period of suppression initiated
by a b-period is therefore

E(s"|B) = E(R™) + rE(S"|4) ,

after the suitably weighted conditional expectations of R* are replaced
by its unconditional expectation.

This result and the previous one for E(S*IA) permit the unconditional
expectation E(S*) for the duration of the overall period of suppression
toibe expressed in terms already established. First note that it may be
written

E(s") = 3 [aE(S"|A)+sE(S"|B)]

with a and g8 continuing to designate the impact rates of rounds with

HORRIGAN ANALYTICH




e R T T T R T S TV ST AT 5 T —r—— e Y e T wrrr—

A-4

single-round periods of suppressive effect appropriate to a-periods and
to b-periods respectively. Substituting the previously established
relationship for E(S*|B) permits E(S*) to be expressed in the form

E(S) = 1 [(a*er)E(s"|A)+8E(RM)] ,

after the necessary simplifications are made. Observing that r = aE(R*) R
which is obvious when the right member is expressed in tail form (as 1s

?one further on), permits r to be eliminated. After simplifying the result
s

E(s") = & [1+8E(R")I01+aE(ST|A)] -1

in which only the conditional expectation E(S*IA) cannot yet be directly
evaluated. Using the previously established relationship

E(S"[A) = CE(R™) +E(FT)1/(1-F)

and observing that f = aE(F*). which 1ike the similar preceding expression
for r is also obvious when the right member is expressed in tail form,
permits the substitution

*
]+aE(S*|A) = l_"’LE.(.A_,).
1-aE(F )

to be made in the right member of the preceding equation for E(S*) . The
result is that

*
E(s") = L [1 +aE(a")] LEEERD) 1

1-aE(F )

in which only*ﬁ(A*) cannot yet be directly evaluated. The factors having
E(F*) and E(R¥) as terms are easily treated, as the following shows.

Evaluating E(F*) and E(R*) is facilitated by using the tails of their
respective probability distributions and noting that since

F* = min(B*- B, H:)
and

R = min(B", H3) .

the latter is essentially a garficular case of the former. By noting
F*>t 1f and only if both B¥- B>t and Hj >t and by recalling the
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representation of the ex?ected vg]ue of a random variable in terms of
its tail the expected value of F" may be written

[ ]
E(F') = fPr{B*>B+t. H:»t}dt .
0

Since B* is independent of H* » which is exponentially distributed with
parameter a , 1t follows tha%

- .}
E(F*) = [ Pr(8">s+t1e~tat .
0

the right member of which is easily expressed in terms of the Laplace
transform of P(t) , the previously established tail function (cf. Section II)

for the duration of a simple pe;iod of suppression. After the necessary
substitutions are performed E(F") is given explicitly by

'(a"'S)B ]_e‘GB

* Bl1-
E(F ) = e e = )] e

atge

from which the explicit result

-y F ) =
+ge” 78

a

follows by successive simpliFication. An almost identical, simplar deri-
vation shows that

* A
148E(R ) = ——T—-m- .
atge” ats

Accordingly, after substitution in the previous formuia for E(S*) » the
relationship

E(S™) = & [1+aE(A")2e®- 1

w*
is demonstrated. Thus E(S ) , the expected duration of the overall period,
is inductively expressed in terms of E(A*), the expected duration of the
period formed when the impacts associated with the minimum single-~-round
period of suppressive effect are ignored, and tha impact rate g8 and
expected duration B of those minimum periods.

A simple notational change makes the formula's sccpe apparert. Recalling
that T* is the random duration of a single-round period of suppressive
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effect, which has been assumed temporarily to be discrete, define its
probability density to be

Pr{T*-r,} “p; 1*1,2, .0

for vy >0 and T < Tie Becuuse the overall impact process is Poisson,
the impact times of those rounds producing only a single-round period of
suppressive effcct with duration Yy themselves form a Poisson process
with intensity Ay=apy o Tha n thus segregated impact processes are
obviously independent, and each permits only 2 single nonrandom single-
round period of suppressive effect. Collectively they form the overall
impact process with intensity A and the random single-round period of
suppressive effect with duration T*.

Define S: to be the duration of a period of suppression produced by the
impact process associated with LI the longest single-round period of
suppressive effect; 52 to be that associated with Tnel and LI the two
longest single-round period of suppressive effect; ...; and, f1na11y.
S to be that associated with all the Ty Applying the formula for
E(S ) first to 51 , which plays the role of A" , and the 1mpact process
astociated with Tpoq 28 the b-period proceis yields E(Sz) Using the
resulting formula for E(Sz) as the new E(A ) and the impact process
associated with Thao 35 the new b-per1od process yields E(S;) Finally,
by continuing in this manner, E(S ) is reached. Consequently, as these
successive evaluations show, the simple formula

n

*y = L -
E(Sn) =+ |exp 211\111 ]

1

gives the expected value of S for any n arising from a discrete valued
*

T. As Ay is by definition xPr{T = 11} » the summation in the exponen-
tial function may be written AE(T ); therefore,

E(ST) = 1 [exprE(1")-1]

is established for all random single-round periods of suppressive effect
that have discrete durations.
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The ?eneralization to continously distributed random durations for the
single-round periods of suppressive effect is straightforward. Let s(-)

designate the probability density for a single-round period of suppressive

effect, and define
Py * 5(11)At

"
for 1=1,2, ..., n. The probability that T takes a value in the
neighborhood of ti accordingly is py . Defining A, to be Apjy and assoc-
clating it with the impact process produc1n? single-round periods of
suppressive effect with durations in the neighborhood of ry produce an
overall process that approximates the actual process as closely as
desired. Furthermore, for all n the expected duration E(S}) of a period
of suppression is given by a formula containing the sum

n

Zi MY

]
which, in terms of the probability density s(:), is in fact

n
A 21:1 T,'S('r,i)A't '

the Riemann sum approximating the integral

o0
A /tS(t)dt ’
0

which is of course just AE(T*) . Therefore, after the appropriate limits
are taken, the expected duration E(S*) of a period of suppression is

E(S") = % [expaE(T")-1]

for a single-round period of sugpressive effect with the arbitrarily
randomly distributed duration T". The formulas discussed in the body

of this report all fol]ow from this equation by merely particularizing
the distribution of T°. Nonuniform fires, for instance, are expressed

by merely taking T* to be governed by an appropriately mixed distribution.
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APPENDIX B

CASUALTY PRODUCTION AND
DURATIONS OF PERIODS OF SUPPRESSION

Casualty production and suppression are probabilistically interrelated.
Combatants that are undumaged after exposure to fires tend to have
experienced fewer impacts in regions of ronzero vulnerability, If the
typical round that impacts ir a combatant’s vicinity has a probability
s of damagin? the combatant, then, on tha average, the number of rounds
that impact in the vicinity of an undamagad conbatant decreases with
increasing & even though the areal impact probability density is uni-
formly random. Whether a combatant is damaged by suprressive fires
consequently affects the number und duration of the periods uf suppres-
sion experienced by that combatant. This appendix quantifies the prob-
abilistic (but not interactive) interrelation between simpie suppression
and casualty production and derives the formulas discussed previously.

In the case of simple suppression only one round type 1s considered,

and it impacts in the region of suppressive affect with the rate A ; as
before, the impact times or indicator events are governed by a Poisson
process with A as its inltensity. For simplicity the combatant's vulner-
able region is limited to being a subregion of its region of suppressive
affect, and their relative disposition is characterized by the probability
5 that an impact in the region of suppressive affect damages the combatant.
Let U(t) designate the avent that the combatant is undamaged by the rounds
impacting in its region of suppressive affect between time zero and t .

In keeping with the structure of tne simple suppression model, an initi-
ating 1mgact takes place at time zero and the random additional number of
rounds N*(t) impacting between zero and t has a Peoisson distribution with
expectancy At . If N°(t) =n and the combatant is to be undamaged at t ,
it must not be damaged by the n+1 impacts. Hence, since the rounds are
independent, the probability Pr{u(tglN*(t) =n} that a combatant experi-
encing an impact at time zere is undamaged at time t after an additional n
impacts is of course (1-8)"*1 | the probability that none of the n+l
rounds produces damage. As N*(t) follows a Poisson distribution with
expectancy At , the cquation

Priu(t)} = (1-8)e”*t
gives the probability Pr{U(t)} that an undamaged combatant initially
suppressed at time zero remains undamaged curing the time t. Consequently,

the conditional probability Pr{N*(t) =n|u(t)} that n additional impacts
occur between zero and t when the combatant remuins unlamaged is given by

Pr(N"(t) =nu(t)} = Iilig%gzlpe-(l-s)xt ,

and N*(t) remains a Poisson process when there is no damage, but it then
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has a new intensity (1-8)\ , which is simply the average rate of impact
of rounds producing no damage.

» »

In order to calculate the expected duration E[S [u(S )] of a period of
suppression during which the incoming fire produces no damage, it is
necessary to derive a formula for the probability Pr{u(S*)} that the
combatant {s undamaged at the end of the period of suppression. Define
T* to be the random time at which an undamaged combatant that is initially
sup?ressod by an impact at time zero first becomes damaged. As the prob-
ability Pr{T™>t} that T* exceeds t is the probability Pr{u(t)} that
;geicom?at?nt is undamaged during t , the probability distribution for

s simply

Pr(T” <t} = 1-(1-6)e"8At |

*
which has an atom of mass &6 at t =0 . The probability Pr{U(S )} that
the combatant survives the suppression period is conversely simply the
probability Pr{T*>S5*} that the first damage occurs after the period of
suppression. Consequently, by expressing Pr{T*>S*} in terms of the
condition T* =t it follows that

[ .}
Pr{U(S*)} - /Pr{s*<t|T* -t}dPr‘{T*st}
0

o0
- 1-6-(1-6)6A/Pr{5*>t|T* =t} At
0

after the integrand is expressed in tail notation, and adjustment for the
saltus at zero is made. For the duration S* of a period of suppression

to exceed t given that damage first occurs at t , suppression must be
maintained through the time t, during which the impact rate in the region
of suppressive affect is only (1-8)x . Hence, tha latter integrand is

just the probability P(t) =Pr{S™>t} that the duration of a period of
simple suppression exceeds t , which is already established (cf. Section II),
when the impact rate is (1-6)A instead of A . The integral itself is simi-
larly merely the also alrea’y established Laplace transform of the P(t) so
modified, with 6\ replacing the transform variable. Therefore the proba-
bility Pr{U(S*)} that the combatant is undamaged during a suppression
period is given by the formula

=AT
Priu(s”)) = —Li=8le

s+(1-6)e"AT
after the necessary substitutions and simplifications are made,

Similar reasoning is applicable to the joint probability Pr{s*>t. u(s*)}
that the duration of a period of suppression exceeds t and the combatant
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is undamaged for the entire period. Expressing u(s*) in terms of T*
as before yields

Pr{S*>t. U(S*)} = Fr{t'<S*<T*} :

a?d12epresenting the right member in terms of the condition that T*'=x
yields

[ -]
Pr{S*>t, U(S*)} =(1- G)GA/EPP{S*>t|T* =x} - Pr{s*>x|T* = x}]e"S gy |
t

when the conditionalized version of the right member is written in tail

E notation. Integrating this expression from zero to infinity with respect
; to t results in .

0 o0
‘ / Pris™>t, U(s™)}dt = (1-6) / (1-6At)Pr(s >t|T" = tre™*Mat
0 0

3 after the order of integration is reversed. As the conditional probability

b in the integrand is ihe same as that previously encountered in the evalua- };
L tion of Pr{U(S*)} , it also may be expressed in terms of P(t) with A :
; replaced by (1-8)x and, consequently, the integral itself in terms of its B

] Laplace transform, with 61 again replacing the transform variable. The

b only sigriificant difference is the occurrence of t in the first factor of

1 the integrand; it introduces the first derivative of the modified transform
j as well. Dividing both members of the preceding equation by Pr{Uu(s*)} , ¥
; of course makes the left member the expected duration E[S*[U(S*)] of a '
| period of suppression during which the combatant is undamaged. After the :
: resulting right member is expressed in terms of the previcusly established
! Laplace transform results with the indjcated substitutions and of the x
g previously derived formula for Pr{U(5*)} , the very simple formula 3

* * 1 1+8)1 }
'z E[S Ju(S)] = ¢+ |——"0= - 1 -
| M Le+(1-8)e7T .

emerges as a consequence of algebraic simplification. Of course, when é

is zero it becomes E($*) , the unconditional expected duration, as it o
should. -

3
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